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In this paper, three displacement functions are introduced to simplify the basic equations
of a radially polarized, spherically isotropic, piezoelectric medium with radial
inhomogeneity. For the general non-axisymmetric free vibration problem, it is shown that
the controlling equations are "nally reduced to an uncoupled second order ordinary
di!erential equation and a coupled system of three second order ordinary di!erential
equations. Solutions to these di!erential equations are given for the case that material
constants are of power functions of the radial co-ordinate. For free vibrations of
multilayered piezoelastic spherical shells, it is shown that there are two separated classes of
vibrations. The "rst class is independent of the electric e!ect and is identically the same as
that for pure elasticity, while the second is a!ected by the electric "eld. Numerical results are
given for the non-axisymmetric free vibration of a single-layered, inhomogeneous
piezoelastic spherical shell and e!ects of some involved parameters are discussed.

( 2000 Academic Press
1. INTRODUCTION

Piezoelectric materials (PZMs) have been extensively used as transducers and sensors due
to the intrinsic direct and converse piezoelectric e!ects that take place between the electric
"eld and the mechanical deformation. They play key roles as active components in many
branches of science and technology such as electronics, infranics, navigation, piezoelectric
power supplies, biology and medical ultrasonic imaging applications. More recently, due to
emergence of piezoelectric composites, the use of PZMs has gone beyond the traditional
application domain of small electric devices or components. Since Bailey and Hubbard's
pioneer work [1], PZMs have been employed as integrated structural elements. These
adaptive structures are capable of monitoring and adapting to their environment, providing
a &&smart'' response to the external conditions. Readers are referred to a state-of-art survey
by Rao and Sunar [2].

For engineering use, piezoelectric components and elements are always fabricated in
a plate or shell con"guration and undergo both static and dynamic forces. In particular,
some of them work in principle according to their dynamic characteristics. Thus,
a comprehensive and thorough understanding of dynamic behaviors of piezoelectric plates
and shells is required. Relative investigations before 1980 can be found in a review article by
Dokmeci [3]. The most recent results on plates and cylindrical shells include the works
[4}12], among others. As regards problems related to spherical shells, Kirichok [13] has
studied the radial oscillation of a piezoelectric spherical shell coupled with both inner and
outer #uid media. Shul'ga et al. [14}17] have also investigated the free and forced radial and
axisymmetric vibrations of homogeneous piezoceramic hollow spheres. The fact that some
0022-460X/00/400833#28 $35.00/0 ( 2000 Academic Press
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piezoceramic converters are made in the spherical con"guration inspires us to pay more
attention here to the general dynamics of piezoelastic spherical bodies. It is also noted that
a spherical body is one of the most simplest and common con"gurations in the so-called
solid resonance method [18], which is very popular nowadays for predicting the physical
constants, especially of modern advanced materials such as composites, crystals and
ceramics.

When dealing with piezoelectric solids, transverse isotropy is of fundamental importance:
the most technologically important PZMs are poled ceramics that exhibit transverse
isotropy with the unique axis aligned along the poling direction. In spherical co-ordinates,
transverse isotropy is also known to be spherical isotropy with the unique axis along the
radial direction. For spherically isotropic pure elasticity, Hu [19] introduced two
displacement potentials to represent the displacement components and then simpli"ed the
basic equations of equilibrium; he showed that the general solutions may be found through
the use of spherical harmonics. On the basis of Hu's separation method, Chen [20]
considered some axisymmetric problems such as a concentrated force in an in"nite medium,
stress concentration due to a spherical cavity and a steadily rotating shell. The separation
method also has been employed by Shul'ga [21] to analyze the general electroelastic
oscillations of homogeneous spherical shells.

Piezoelectric crystals besides being direction-oriented could also exhibit inhomogeneity
with reference to physical properties. For pure elastic problem, Puro [22] applied the
separation method to take account of the e!ect of the radial inhomogeneity of a spherically
isotropic elastic medium. Sarma [23] considered the torsional wave motion of an
inhomogeneous piezoelectric cylindrical shell with "nite length. Recently, the concept of
functionally graded material (FGM) has been introduced to describe a special kind of
inhomogeneous material. In FGM, there are at least two material constituents that are
combined together according to a speci"c scheme. The material properties of FGMs always
vary along one or more directions continuously. To provide new ideas for the design and
optimization of smart structures, it is necessary to study the e!ect of the material graded
property of piezoelectric plates and shells.

Frobenius power-series (FPS) method has been proven to be the most powerful tool to
obtain series form solutions to di!erential equations with singular points. Many
well-known functions have been constructed and developed such as Legendre and Bessel
functions. It might be due to Minkarah and Hoppmann [24] who analyzed the vibrations of
anisotropic circular plates that the FPS method "rstly attracted attention from researchers
of mechanics. Mirsky almost simultaneously used the FPS method to consider the free
vibration of in"nite orthotropic cylinders [25] and later of orthotropic cylindrical shells
[26]. From then on, the FPS method has been widely used to analyze problems in various
aspects of mechanics, including the recent application in studying static behavior of
piezoelectric laminated cylindrical shells [27].

The traditional FPS method used to solve di!erential equations has the drawback that it
is di$cult to completely establish all relationships between the roots of the characteristic
equation (indicial equation). Recently, Ding et al. [28, 29] proposed a matrix FPS method
to overcome the above-mentioned drawback and solved the related ordinary di!erential
equations appearing in vibrations of spherically isotropic elastic hollow spheres [30].

In the paper, the separation method is further generalized and applied to study the
general vibration problem of a spherically isotropic piezoelastic medium with radial
inhomogeneity. The basic equations of a spherically isotropic piezoelastic body are brie#y
reviewed in section 2. Three displacement functions are then introduced to decompose three
displacement components in spherical co-ordinates in section 3. Some considerations on the
solutions are presented in section 4. It is found that for the usual transversely isotropic
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homogeneous piezoelectricity, some results degenerate identically to those available in the
literature. Section 5 considers the general non-axisymmetric free vibration problem. By
expanding three displacement functions and the electric potential in terms of spherical
harmonics, the controlling equations are further simpli"ed to an uncoupled second order
ordinary di!erential equation and a coupled system of three such equations. Since any
su$ciently continuous function can be expressed in power series by virtue of the Taylor's
theorem, attention is paid to the case that the material constants are of power functions in
the radial variable. In this case, solutions to the independent equation as well as the coupled
system are derived in section 6. The free vibration problem of multi-layered piezoelectric
spherical shells is then considered in section 7 with exact frequency equations presented in
section 8 for a single-layered spherical shell. Numerical results are then given in section 9 to
discuss the e!ects of some involved parameters.

2. BASIC EQUATIONS

For a spherically isotropic piezoelastic medium, spherical co-ordinates (r, h, /) are used
with r radial, h colatitudinal and / meridional. Supposing the center of anisotropy to be
identical to the origin of the co-ordinates, the linear constitutive relations are expressed as
follows [21]:
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where p
ij

and s
ij

are the stress and strain tensors, respectively, E
i
and D

i
are the electric "eld

intensity and electric displacement vectors, respectively, c
ij

are the elastic sti!ness constants
(measured in a constant electric "eld), e

ij
the dielectric constants (measured at constant

strain), and e
ij

the piezoelectric constants. In the most general case of anisotropy (triclinic
crystal structure), the PZM is described by 21#6#18"45 independent constants. It is
noted that for the case of spherical isotropy as represented by equations (1) and (2), we have
an additional relationship c

11
"c

12
#2c

66
. Thus, the piezoelectric solid is only

characterized by "ve elastic, two dielectric and three piezoelectric constants, that is, a total
of 10 independent material constants. In this paper, we assume that all physical constants
including these 10 material ones are functions of the radial co-ordinate r, i.e., the
piezoelectric medium under consideration is radially inhomogeneous.

The electric "eld intensity vector E
i
is related to an electric potential U as
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The charge equation of electrostatistics is [21, 31]
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Apart from equations (1)} (4), the basic equations of a spherically isotropic piezoelastic
body still include the strain}mechanical displacement relations and the di!erential
equations of motion. Their forms in spherical co-ordinates can be found in reference [32]
and are not repeated here.

3. SEPARATION METHOD AND FORMULATIONS

To simplify the basic equations, three displacement functions w, G and t are introduced
so that the mechanical displacement components are decomposed as
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It is further assumed that the body force components F
i
(i"r, h, /) can also be decomposed

in the same way, i.e.,
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The most common case is that the body force vector is potential, for which one has
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By employing equations (5) and (6), through some lengthy manipulations, we can transfer
the basic equations to the following equations:
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where o is the mass density of the piezoelastic body, which is also a function of r, a dot over
any quantity represents its derivative with respect to time t, and
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From equations (8) and (9), one obtains
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Substituting equations (13) and (14) into equations (8) and (9), one "nds

+ 2
1
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Hu [19] and Chen [29] have veri"ed that H,0 can be assumed for homogeneous and
non-homogeneous spherically isotropic elasticity respectively. A similar demonstration can
be given in the case of non-homogeneous piezoelectricity, see Appendix A. Under this
situation, equations (13) and (14) become
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Thus, we turn the basic equations to equations (10), (11), (16) and (17), from which, we
"nd that the function t is uncoupled from two other displacement functions w and G,
and the electric potential U. In particular, equation (17) is an independent second order
partial di!erential equation in t; equations (10), (11) and (16) form a coupled partial
di!erential equation system in w, G and U. The separability of the basic equations of
non-homogeneous spherically isotropic piezoelectricity will be favorable for solving relative
problems.

4. SOME CONSIDERATIONS ON THE SOLUTIONS

4.1. GENERAL CONSIDERATIONS

The solution to equation (17) can be written as
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where t
0

is the general solution of the following homogeneous equation:
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and t
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is the particular solution of the associated non-homogeneous equation
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The solution to the coupled system can be written as

w"

3
+
i/0

w
i
, G"

3
+
i/0

G
i
, U"

3
+
i/0

U
i
, (21)

where w
0
, G

0
and U

0
are the general solution of the following homogeneous equations:

C¸1
#(+

2
c
44

)]w
0
![¸

2
#(+

2
c
44

)(+
2
!1)!r2o

L2

Lt2DG
0

#[¸
6
#(+

2
e
15

)]U
0
"0,

C¸3
#2(+

2
c
13

)#(+
2
c
33

)+
2
!r2o

L2

Lt2Dw
0
![¸

4
#(+

2
c
13

)]+ 2
1

G
0

(22)

#[¸
5
#(+

2
e
33

)+
2
]U

0
"0,

[¸
7
#2(+

2
e
31

)#(+
2
e
33

)+
2
]w

0
![¸

8
#(+

2
e
31

)]+ 2
1

G
0

![¸
9
#(+

2
e
33

)+
2
]U

0
"0

and w
i
, G

i
and U

i
(i"1, 2, 3) are the particular solutions of the following non-homogeneous

equations, respectively.

[¸
1
#(+

2
c
44

)]w
1
!C¸2

#(+
2
c
44

)(+
2
!1)!r2o

L2

Lt2DG
1

#[¸
6
#(+

2
e
15

)]U
1
"r;,

C¸3
#2(+

2
c
13

)#(+
2
c
33

)+
2
!r2o

L2

Lt2Dw
1
![¸

4
#(+

2
c
13

)]+ 2
1

G
1

(23)

#[¸
5
#(+

2
e
33

)+
2
]U

1
"0,

[¸
7
#2(+

2
e
31

)#(+
2
e
33

)+
2
]w

1
![¸

8
#(+

2
e
31

)]+ 2
1

G
1

![¸
9
#(+

2
e
33

)+
2
]U

1
"0



VIBRATION OF PIEZOELASTIC BODIES 839
[¸
1
#(+

2
c
44

)]w
2
!C¸2

#(+
2
c
44

)(+
2
!1)!r2o

L2

Lt2DG
2

#[¸
6
#(+

2
e
15

)]U
2
"0,

C¸3
#2(+

2
c
13

)#(+
2
c
33

)+
2
!r2o

L2

Lt2Dw
2
![¸

4
#(+

2
c
13

)]+ 2
1

G
2

(24)

#[¸
5
#(+

2
e
33

)+
2
]U

2
"!r2F

r
,

[¸
7
#2(+

2
e
31

)#(+
2
e
33

)+
2
]w

2
![¸

8
#(+

2
e
31

)]+ 2
1

G
2

![¸
9
#(+

2
e
33

)+
2
]U

2
"0

[¸
1
#(+

2
c
44

)]w
3
!C¸2

#(+
2
c
44

)(+
2
!1)!r2o

L2

Lt2DG
3

#[¸
6
#(+

2
e
15

)]U
3
"0,

C¸3
#2(+

2
c
13

)#(+
2
c
33

)+
2
!r2o

L2

Lt2Dw
3
![¸

4
#(+

2
c
13

)]+ 2
1

G
3

(25)

#[¸
5
#(+

2
e
33

)+
2
]U

3
"0,

[¸
7
#2(+

2
e
31

)#(+
2
e
33

)+
2
]w

3
![¸

8
#(+

2
e
31

)]+ 2
1

G
3

![¸
9
#(+

2
e
33

)+
2
]U

3
"r2o

f
.

From equations (19), (20), (22)}(25), it can be seen that the following separation method is
suitable for obtaining solutions to these equations:
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The corresponding equations for the static problem can be obtained by eliminating terms
involving derivative with respect to time t and all unknowns are independent of t.

4.2. THE HOMOGENEOUS CASE

If the piezoelastic body is homogeneous, then instead of equations (10), (11), (16) and (17),
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It is noted here that for static problems in the homogeneous case since the operators in
equations (22)}(25) are interchangeable, by employing the operator theory, we can obtain
the general as well as the particular solutions to these equations as follows:
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4.3. TRANSVERSE ISOTROPY

Transverse isotropy is usually described in cylindrical co-ordinates (r
1
, /, z) or Cartesian

co-ordinates (x, y, z). It can be seen as a limiting case of spherical isotropy through the
following limiting procedure:
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The above separation formula has been adopted by Ding et al. [33] to deal with problems of
transversely isotropic piezoelectric media. We also write down equation (6) in this case as

F
r1
"

L<*

r
1
L/

!

L;
Lr

1

, F
(
"!

L<*

Lr
1

!

L;
r
1
L/

, (36)

where <"!<* is introduced. Thus, equation (17) will take the following form for
transverse isotropy:
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If the transversely isotropic body under consideration is homogeneous, then equation (37)
reduces to equation (19) in Ding et al. [33], where the e!ect of body force was not taken into
consideration. By virtue of equations (33)} (35), the coupled system of equations (10), (11)
and (16) becomes
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where the property F
r
PF

z
is employed. It can be seen that for a homogeneous piezoelectric

body, equation (38) reduces to equation (20) in Ding et al. [33] if the right-hand side of
equation (38) vanishes. For the homogeneous case, the operators in equation (38) are
interchangeable, and the solution to it can be constructed by the operator theory as
mentioned above. Readers are also referred to Ding et al. [33].

5. GENERAL NON-AXISYMMETRIC FREE VIBRATION

For the free vibration or steady response problem, equations (10), (11), (16) and (17) can
be further simpli"ed. We notice that all these equations include the partial operator + 2

1
,

which is de"ned in equation (12). The following form for the displacement functions and the
electric potential is thus taken for a spherical body
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where Sm
n
(h, /)"Pm

n
(cos h) exp (im/) are spherical harmonics and Pm

n
(cos h) are the

associated Legendre functions, n and m are integers, and u is the circular frequency. For the
sake of computational convenience, the following parameters are introduced:
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(40)

where R is a characteristic length, and v
2
"Jc

4
/o is the elastic wave velocity.

Substitution of equation (39) into equations (10), (11), (16) and (17), and making use of
equation (40), yields
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where a prime denotes di!erentiation with respect to m, and
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Notice here that the body forces and the free charge density have been dropped during the
derivation of equations (41)}(44). Thus, for free vibration problem, we have turned the
original controlling equations to equations (41)} (44) in a non-dimensional form. It can be
seen that equation (41) is an independent second order ordinary di!erential equation in the
unknown ;

n
. Equations (42)} (44) are coupled by the three unknowns <

n
,=

n
and X

n
, and

each equation involved is a second order ordinary di!erential one. It is obvious that m"0 is
a singular point both of the uncoupled di!erential equation (41) and the coupled system
(42)}(44). If the distributions of the physical constants along the radial direction are known,
then one can distinguish which kind of singularity of the point m"0 is. In what follows,
solutions to equations (41)}(44) will be given for the particular case when all material
constants are of power functions in the radial variable.

6. SOLUTIONS TO EQUATIONS (41)}(44)

We assume here that all material constants are of power functions in the non-dimensional
radial variable m, say, c

ij
"c0

ij
ma, e

ij
"e0

ij
ma, e

ij
"e0

ij
ma and o"o0ma, here c0

ij
, e0

ij
, e0

ij
and

o0 are constants. Equations (41)} (44) remain unaltered except that the following
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non-dimensional parameters read as
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(46)

It is noted here that the non-dimensional parameters f
i
(i"1, 2,2, 8) de"ned in equation

(40) now take forms such as f
1
"c0

11
/c0

44
and f

2
"c0

12
/c0

44
, etc.

6.1. SOLUTION TO EQUATION (41)

It can be shown that equation (41) is a special case of the con#uent hypergeometric
di!erential equation; its solution can be easily obtained as

;
n
(m)"m!(1#a)/2[B
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J
n
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Yg (Xm)] (n*1), (47)

where Jg and Yg are the "rst and second kinds of Bessel functions, respectively, B
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and
B
n2

are arbitrary constants, and
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6.2. SOLUTION TO THE COUPLED SYSTEM (42)}(44)

To obtain the solution to this ordinary di!erential equation system, the matrix FPS
method developed in reference [28] is employed. We assume
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Substitution of equation (49) into equations (42)} (44) yields
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where
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where the notation si"s#i has been used for compactness. Considering the left-hand side
of equation (50), on equating to zero the coe$cient of the term of the lowest degree in m, one
obtains the indicial equation:

DH
2
(s) D"0. (52)

This is a sixth order algebraic equation, from which one can solve for six indicials s.
Following the derivation as described in references [28, 29], one can "nd that it is easy to
deal with all the cases considering di!erent relationships between the six indicials. Details
are, however, omitted and the general solution "nally can be expressed as the linear
combination of six independent solutions as follows:
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where C
nj

are abitrary constants and=
nj

, <
nj

and X
nj

are convergent, in"nite series in the
variable m that can be obtained by comparing the coe$cients of equation (50) term by term.
It is noted here that for the most common case where no two of the six indicials di!er by an
even integer, solution (53) has the simplest form containing no logarithmic term.

It should be pointed out that n"0 is a special case for which function <
n
(m) contributes

nothing to the piezoelastic "eld as can one see from equation (5). In fact, equations (42)}(44)
will read in this case as follows
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In this case, instead of equation (52), we can derive the following indicial equation:
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We can then use the matrix FPS method to obtain the following form solution of equations
(54) and (55):

=
0
(m)"

4
+
i/1

C
0i
=

0i
(m), X

0
(m)"

4
+
t/1

C
0i

X
0i

(m). (57)

7. FREE VIBRATIONS OF MULTI-LAYERED SPHERICAL SHELLS

Based on equations (1)} (3), (5), (39) and (40), one can write out the expressions for stresses,
mechanical and electric displacements, and electric potential on a spherical surface in the



VIBRATION OF PIEZOELASTIC BODIES 845
non-dimensional functions;
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(m) as follows (for the sake of simplicity,

the common dynamic factor exp (iut) is dropped):
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Equation (58) is given for a single couple of n and m; the whole electroelastic "eld is the sum
of such terms for n varying from 0 to R and m)n. Because of the orthogonal property of
spherical harmonics, we can deal with them separately.

We shall now consider the boundary and the continuity conditions of a multilayered
spherical shell composed of p layer piezoelastic materials, as shown in Figure 1. For the free
vibration problem, both the inner and outer spherical surfaces are free from tractions as well
as the normal electric displacement, i.e.,

p
rr
"p

rh"p
r(
"0"D

r
(r"a, b). (59)
Figure 1. Geometry of a multi-layered spherical shell.
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We further suppose that two connected layers say the lth and (l#1)th layers, are perfectly
bonded so that all the physical quantities at the interface r"c are continuous. Thus, we
have
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where the superscript (l) denotes the quantity of the lth layer and so on. Noticing the
following identity,
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and the orthogonal property of the Legendre functions, one obtains from equations (58)
and (59):

;@(1,p)
n

!;(1,p)
n

/m"0 (m"m
1
, m

2
), (62)

n(n#1)<(1,p)
n

/m#2=(1,p)
n

/m#( f (1,p)
4

/ f (1,p)
3

)=@(1,p)
n

#( f (1,p)
8

/ f (1,p)
3

)X@(1,p)
n

"0

=(1,p)
n

/m#<(1,p)
n

/m!<@(1,p)
n

#f (1,p)
5

f (1,p)
8

X(1,p)
n

/m"0 (m"m
1
, m

2
), (63)

n(n#1) f (1,p)
6
<(1,p)

n
/m#2 f (1,p)

6
=(1,p)

n
/m#=@(1,p)

n
!X@(1,p)

n
"0

where m
1
"a/R and m

2
"b/R are the non-dimensional radii and R"(a#b)/2 is the mean

radius. Similarly, equation (60) gives
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As we can see from equations (62)}(65), the boundary conditions are also separated into two
catalogues: one relates to the function;

n
(m) only, and the other is expressed by the other three

functions=
n
(m),<

n
(m) and X

n
(m). Now we can reach the conclusion that the free vibrations of

a multi-layered, inhomogeneous, spherically isotropic, piezoelastic spherical shell can be
divided into two independent classes as the cases of a pure elastic shell
[29, 34, 35] and of a homogeneous piezoelastic one [21]. The "rst class is de"ned by the
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di!erential equation (41) and the boundary conditions (62) and (64), while the second by the
di!erential equations (42)} (44) and the boundary conditions (63) and (65). It can be shown
that the "rst class corresponds to an equivoluminal motion of the shell and is characterized
by the absence of a radial component of the mechanical displacement and of the electric
potential, while, for the second class, the mechanical displacement has in general, both
transverse and radial components, but the rotation has no radial component. Substituting
solutions of the di!erential equations (41)} (44) into the boundary and continuity conditions
(62)}(65), one can get 2p homogeneous linear algebraic equations in 2p unknown constants
B(j)
ni

(i"1, 2; j"1, 2,2 , p) for the "rst class, and 6p such ones in 6p unknown constants
C (j)

ni
(i"1, 2,2, 6; j"1, 2,2 , p) for the second class. It is also noted that n"0 is an

exception of the second class, for which, in general, 4p homogeneous linear algebraic
equations will be obtained; however, it will be shown that only 2p ones will be involved
"nally and a detailed explanation will be given later for the case that material constants
obey power laws. It is well known that for non-trivial solutions to exist, the coe$cient
determinants of the two linear systems should vanish so that the corresponding frequency
equations can be obtained. One interesting point that should be mentioned is that the
di!erential equations as well as the boundary conditions, and thus the frequency equations,
for both classes, do not contain the integer m, which particularly represents the
non-axisymmetric characteristics of the motion of the shell. It seems paradoxical, however,
the explanation has already been given by Silbiger [36] for a thin isotropic spherical shell
that the non-axisymmetric modes of vibrations can be obtained by the superposition of the
axisymmetric ones of identical natural frequency. That is still the case for a multi-layered
piezoelastic spherical shell with radial inhomogeneity.

In the following section, we will only give the frequency equations for a single-layered
spherical shell as an example; the ones for multi-layered spherical shell can be readily
obtained based on the above results. Material constants are assumed to be in power forms
along the radial direction so that solutions obtained in section 6 will be employed.

8. FREQUENCIES OF A SINGLE-LAYERED SPHERICAL SHELL

8.1. FREQUENCY EQUATION OF THE FIRST CLASS (n*1)

For a single-layered spherical shell, we should only allow for the boundary conditions
(62), from which we obtain the frequency equation as follows:
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Notice that when n"1, the frequency equation (66) corresponds to a torsional or rotary
mode of the shell. In particular, there exists a rigid-body rotation, for which the frequency
equals zero. We can further see that equation (66) contains no parameter related to the
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electric "eld. In fact, it is identical to that of a pure elastic inhomogeneous spherical shell.
For the homogeneous case, equation (66) degenerates to that reported in Ding and Chen
[34, 35].

It is interesting to consider the case when Xm
i
(i"1, 2) are large and the spherical shell is

thin, for which the asymptotic expansions of Bessel functions can be used [37]. We therefore
derive the following frequency equation:

tan (Xt*)

Xt*
"

4g2#15#4a
8X2m

1
m
2
!4g2#33#16a#2a2

, (68)

where t*"(b!a)/R is the thickness-to-mean radius ratio of the shell. Equation (68) is
expectedly identical to that obtained by Cohen et al. [30] if the inhomogeneity is not
considered, i.e., when a"0.

8.2. FREQUENCY EQUATION OF THE SECOND CLASS (n*0)

For n"0, it needs further investigations. First, we denote the roots of the indicial
equation (56) as follows:
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We can then verify that the solution corresponding to s
4

will give no contribution to the
stresses and electric displacements so that we have C

04
"0 in equation (57). That is to say

only three unknown constants are involved for n"0. It seems paradoxical at a glance that
we have totally four boundary conditions (p

rr
"D

r
"0) on the inner and outer spherical

surfaces. However, one can demonstrate that the radial electric displacement component
D

r
corresponding to ether s

1
or s

2
will be zero (see Appendix B), which guarantees that the

two boundary conditions D
r
(a)"0 and D

r
(b)"0, both giving C

03
"0, are exactly the

same. We thus "nally obtain two linear homogeneous equations in two unknowns C
01

and
C

02
. The vanishing of the corresponding coe$cient determinant gives the following

frequency equation:
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Obviously, frequency equation (70) corresponds to the purely radial vibration. It is also
noted here that if a multi-layered spherical shell is considered, only 2p unknowns will be
involved in the "nal 2p linear homogeneous system.

When n*1, one obtains six homogeneous linear algebraic equations and the following
frequency equation is derived:

DE3
ij
D"0 (i, j"1, 2,2, 6), (72)
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It is noted that for n"1, equation (72) has trivial solution, i.e., X"0. It corresponds to
a rigid-body translation of the shell. The existence of such a rigid-body movement also has
been observed for a homogeneous elastic spherical shell [29, 34].

So far, we have derived frequency equations of the two independent classes of vibrations.
In the next section, we will give some numerical results to study the e!ects of several
involved parameters of the spherical shell. We will pay attention only to the natural
frequencies and the corresponding mode shapes are not to be presented. One can solve the
eigenvectors from the homogeneous linear algebraic equations once the frequency is
obtained and then can calculate the corresponding mode shapes by simple substitution.

9. NUMERICAL EXAMPLES

For numerical calculations, we shall consider two kinds of piezoelectric materials, i.e.,
PZT-4 and PZT-7A, whose material constants can be found in Dunn and Taya [38], for
example. Table 1 lists out their non-dimensional values calculated according to the
de"nitions given in equation (40). We use MATHEMATICA to write program and perform
all the calculations. Since each frequency equation has more than one root, only the smallest
positive frequency that is of physical signi"cance will be presented in the following.

9.1. THE FIRST CLASS

As mentioned earlier, equation (66) is the frequency equation of torsional vibration when
n"1. Figure 2 displays curves of the non-dimensional torsional frequency X versus the
inhomogeneity parameter a, for four values of the thickness-to-mean radius ratio, t*. The
material is taken to be PZT-4. It is seen that the thicker the shell is, the smaller the frequency
TABLE 1

Non-dimensional material constants of two piezoelectric materials

Material f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

PZT-4 5)43 3)04 2)90 4)49 0)84 !0)34 1)15 1)58
PZT-7A 5)08 3)00 2)92 5)16 1)02 !0)22 1)96 1)71



Figure 2. Non-dimensional torsional frequency X ("rst kind, n"1) versus the inhomogeneity parameter
a (PZT-4): *j*, t*"1)2; *m*, t*"0)9; *d*, t*"0)6; *.*, t*"0)3.

Figure 3. Non-dimensional frequency X of the "rst kind (solid line: n"2; dotted line: n"3) versus the
inhomogeneity parameter a (PZT-4): *m*, t*"0)2; *d*, t*"0)8; )))))m))))), t*"0)2; ))))d)))), t*"0)8.
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is. Also, with the increase of a, the frequency X "rst decreases and then becomes larger. The
lowest natural frequency appears at a+!5)0. This will be of particular importance in
practice since engineers can design the spherical dynamic gauges and meters not only by
adopting di!erent sizes but also by utilizing the idea of inhomogeneity. Figure 3 displays
curves of the non-dimensional frequency X versus the inhomogeneity parameter a for n"2
and 3. We notice the speci"ed phenomena that occupied by the inhomogeneous spherical
shell, i.e. for a certain value of a, the frequency curves corresponding to two di!erent ratios
of the thickness-to-mean radius t* will intersect. By comparing Figure 2 with Figure 3, we
"nd that, in contrast to the torsional vibration, the frequency for higher modes (n"2, 3)
decreases with the increase of a, and the degree of the descendant varies greatly with the
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value of t*. Moreover, the e!ect of a on a thick shell is more obvious than that on a thin
shell.

9.2. THE SECOND CLASS

For the second class, when n"0, the spherical shell will vibrate only in the radial
direction. This state of vibration is also known as the &&breathing mode''. Curves of the
non-dimensional frequency X versus the inhomogeneity parameter a for three values of t*
are shown in Figures 4}6 respectively. For comparison purpose, we give two curves
Figure 5. Non-dimensional breathing mode frequency X (second kind, n"0) versus the inhomogeneity
parameter a when t*"0)5: n"0; t*"0)5; *s*, PZT-7A; *d*, PZT-4.

Figure 4. Non-dimensional breathing mode frequency X (second kind, n"0) versus the inhomogeneity
parameter a when t*"0)1: n"0; t*"0)1; *s*, PZT-7A; *d*, PZT-4.



Figure 6. Non-dimensional breathing mode frequency X (second kind, n"0) versus the inhomogeneity
parameter a when t*"1)0: n"0; t*"1)0; *s*, PZT-7A; *d*, PZT-4.

Figure 7. Non-dimensional frequency X (second kind, n"1) versus the inhomogeneity parameter a when
t*"0)1: n"1; t*"0)1; *s*, PZT-7A; *d*, PZT-4.
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corresponding to PZT-4 and PZT-7A materials in each "gure simultaneously. It is shown
that the frequency of a PZT-4 spherical shell is lower than the corresponding one of
a PZT-7A spherical shell for all three values of the thickness-to-mean radius ratio. As we
can see, the non-dimensional frequency X decreases with the increase of a for all cases when
n"0. Similar behaviors can be observed for the non-breathing mode when n"2 as shown
in Figures 10}12. However, for n"1 (Figures 7}9), it is somehow di!erent for the thicker
shells as we can see from Figure 9, for which the thickness-to-mean radius ratio is 1)0. The
variation of X versus a is no longer monotonous, see the region 0(a(10.

Though numerical results are not given for higher modes, other materials as well as other
geometric parameters, the author believes that some particular observations will be



Figure 8. Non-dimensional frequency X (second kind, n"1) versus the inhomogeneity parameter a when
t*"0)5: n"1; t*"0)5; *s*, PZT-7A; *d*, PZT-4.

Figure 9. Non-dimensional frequency X (second kind, n"1) versus the inhomogeneity parameter a when
t*"1)0: n"1; t*"1)0; *s*, PZT-7A; *d*, PZT-4.
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obtained. It is impossible to present here a much wider numerical investigation on various
parameters involved in the frequency equations due to the length limitation of the paper. In
practice, one can perform such calculations without any di$culty and then extract some
useful conclusions that will be helpful to a certain practical design.

10. CONCLUSIONS

In this paper, we simplify the basic equations of a radially polarized, non-homogeneous
piezoelastic medium by the introduction of three displacement functions. For the general



Figure 10. Non-dimensional frequency X (second kind, n"2) versus the inhomogeneity parameter a when
t*"0)1: n"2; t*"0)1; *s*, PZT-7A; *d*, PZT-4.

Figure 11. Non-dimensional frequency X (second kind, n"2) versus the inhomogeneity parameter a when
t*"0)5: n"2; t*"0)5; *s*, PZT-7A; *d*, PZT-4.
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non-axisymmetric free vibration problem, these equations are "nally reduced to an
uncoupled second order ordinary di!erential equation in the unknown ;

n
, and a coupled

system of three such equations in the unknowns <
n
, =

n
and X

n
. Generally speaking,

solutions to these equations can always be obtained by the series expansion method. For
the particular case that all the material constant are of power functions in the radial
variable, the independent di!erential equation is found to be a special case of the con#uent
hypergeometric di!erential one and its solution is easily obtained. The coupled system is
much complicated and its solution can be derived based on the matrix FPS method.



Figure 12. Non-dimensional frequency X (second kind, n"2) versus the inhomogeneity parameter a when
t*"1)0: n"2; t*"1)0; *s*, PZT-7A; *d*, PZT-4.

VIBRATION OF PIEZOELASTIC BODIES 855
The free vibration problem of multi-layered piezoelectric spherical shells is then
considered. It is found that the vibration can be divided into two independent classes, just as
the case of pure elasticity [29, 30]. In fact, the "rst class is identical to that of the pure elastic
spherical shell, with no electric parameter involved. As expected, the second one has
changed due to the speci"ed coupling characteristics between the elastic and electric "elds.
We give for example the frequency equations of a single-layered piezoelastic spherical shell
with material constants in power laws along the radial co-ordinate. In particular, we "nd
that for the purely radial free vibration (the so-called &&breathing mode''), the boundary
conditions eventually include only two unknown constants and thus the frequency equation
is simpli"ed as equation (70) shows. This fact has not been found in the literature even for
a single-layered homogeneous piezoelastic spherical shell. Numerical results are "nally
presented and some observations are obtained.
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APPENDIX A

In the following, we prove that to solve relative problems, one can assume H,0 so that
equations (16) and (17) hold. It is "rst noticed that the resolvent form for displacements
represented by equation (5) is not single. In fact, the corresponding homogeneous one of
equation (5) has non-trivial solution namely t0 and G0 that satisfy:

1
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Lh
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sin h
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It is obvious that if t and G in equation (5) are replaced with t*"t#t0 and
G*"G#G0, respectively, the mechanical displacement remains unaltered. From equation
(A1), one "nds that
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1
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G0"0. (A2)

Substituting t and G with t* and G*, respectively, into equations (13) and (14) will lead to
equations (16) and (17) if there exist
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Noticing equations (A2), the above two equations turn to
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Now consider the following equation:
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where H is an arbitrary function. Applying the Laplace transform to equation (A7) gives
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where

HM "P
=

0

He~ptdt HM "P
=

0

He~ptdt.

It is seen that equation (A8) is a non-homogeneous, second order ordinary di!erential
equation with certain singular points. Theoretically speaking, one can at "rst get the
corresponding homogeneous solution by the theory of second order ordinary equation.
Then one can derive the non-homogeneous solution by the method of variation of
parameter. Assuming that the solution to equation (A8) has been obtained, we take

t1 0"sin h
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c
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where t1 0 and G1 0 are the image functions of t0 and G0 respectively. Since H1 is obtained by
the method of variation of parameter, its expression includes the kernel HM . Moreover, it is
known that both the Laplace transform as well as the solving procedure do not involve the
two variables h and /. Thus, from equation (15), one has + 2

1
HM "0. Noticing that the elastic

constant c
44

is a function of the variable r only, it is obtained from equations (A9) that
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Because the Laplace transform is only related to the time variable t, we can directly derive
equation (A1) from the above equation. Based on the above veri"cation, we obviously
obtain equations (16) and (17).

APPENDIX B

In this appendix, we prove that the electric displacement D
r
corresponding to the two

indicials s
1

and s
2

vanishes when n"0. According to the matrix FPS method [28], we
assume that
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For the sake of simplicity, we assume here that no two of the four indicials s
i
(i"1, 2, 3, 4)

di!er by an even integer. Otherwise, the solution as given in equation (B1) may contain
logarithmic terms [28] and the followed demonstration is similar to what will be presented
here. Substituting equation (B1) into equations (54) and (55) gives
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and si"s#i. The indicial equation (56) can be obtained by setting DN
2
(s) D"0. By virtue of

the matrix FPS method described in reference [28], we obtain from equation (B2)
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in which C
00

is an arbitrary constant. Noticing the properties of the two matrices N
1

and
N

2
, one can easily "nd that the following identity holds for i*1:
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where k
1

and k
2

are two constants and the ratio between them can be obtained as
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From equations (58) and (B4), one obtains the expression for D
r
when n"0:
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By virtue of equations (B5), (B7) and (B8), we directly obtain D
r
"0 from equation (B9).
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It should be pointed out that the above veri"cation is only valid for the two indicials
s
1

and s
2

(s
4
"(1#a)/2 is no longer considered because the corresponding stresses and

electric displacements vanish and thus can be made zero). For s
3
"!(1#a)/2, since
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we can only take
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Thus, the radial electric displacement D
r
corresponding to s

3
does not equal zero.
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